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Abstract

The singularity theory and continuation techniques are combined to classify the static and dynamic behavior of a non-isothermal gas–solid

fluidized-bed catalytic reactor with consecutive exothermic reactions A
k1→B

k2→C. It is shown that the double limit variety with five solutions
is the highest static singularity the model can predict. The model is also capable of predicting self sustained oscillations for a wide range
of Lewis numbers. The effect of the model parameters on its static and dynamic bifurcation is analyzed. Practical criteria are also derived
for the effect of the branching phenomena on the yield of the intermediate product in the reactions network. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Non-linear models of reactive systems can exhibit a va-
riety of behavior depending on the values of the system
parameters. For certain values of the parameters the reac-
tive system can exhibit simple or complex quasi-periodic
as well as chaotic oscillations. An important objective for
the analysis of dynamics of reactive systems is the classi-
fication of the parameter space into regions where differ-
ent types of behavior can be delineated. Besides increas-
ing the understanding of the reactive system, this classifi-
cation can have practical impact on the operation of the
reactor, since it can allow the determination of boundaries
between safe and runaway regions and the delineation of
regions of undesired oscillations or unstability. The clas-
sification of the parameter space is however a challenging
task since the number of parameters in any reactive sys-
tem model can be quite large. A systematic classification
in the multidimensional parameter space can be a difficult
task without appropriate theoretical means. Various nonlin-
ear dynamics tools have been used in the literature for the
analysis of reactive systems. Among them the singularity
theory [1] is recognized as being a useful tool since it can
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provide a general framework for classifying branching phe-
nomena in which different kinds of multiplicity in the non-
linear model can be expected. The theory has found several
applications in the chemical engineering field since Balako-
taiah and Luss [2] analyzed the multiplicity phenomenon
of the simple CSTR. D’anna et al. [3] and Alhumazi and
Aris [4] provided other applications of the theory in their
study of the stability characteristics of autocatalytic reactive
systems. Most of the comprehensive studies in the litera-
ture focused on homogenous and pseudo-homogenous re-
active systems. Recently Subramanian and Balakotaiah [5]
extended the classification to a heterogeneous well-mixed
reactor.

In this contribution we extend the study of heteroge-
neous systems by a classification of the static and dy-
namic behavior of a non-isothermal gas–solid catalytic
bubbling fluidized-bed reactor. A consecutive reaction net-

work A
k1→B

k2→C is taking place in the reactor where the
desired product is the intermediate component (B). The
problem has practical applications. Besides the impor-
tant industrial uses of fluidized-bed technology, there are
cases in petrochemical industry where the reactor is oper-
ated in a multiplicity region or where the maximum yield
of the intermediate product occurs at an unstable point.
These situations include the industrially important FCC
unit [6], the partial oxidation ofo-xylene [7] as well as
oxidative dehydrogenation reactions such as the oxidative
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Nomenclature

a two-phase parameter (=QEHAC/GC)

A cross-sectional area of the bed (cm2)
AC cross-sectional area of the bed occupied

by bubble phase (cm2)
AI cross-sectional area of the bed occupied

by dense phase (cm2)
Ci concentration of componenti in the

dense phase (kg mol cm−3)
Cif feed concentration of component

i (kg mol cm−3)
C̄i concentration of the component

i in the bubble phase (kg mol cm−3)
C̄m total concentration of active sites

(kg mol/kg catalyst)
Cpf specific heat of gas (kJ kg−1 K)
Cps specific heat of the catalyst (kJ kg−1 K)
Cref reference concentration (kg mol cm−3)
E1 activation energy for the reaction

A → B (kJ kg mol−1)
E2 activation energy for the reaction

B → C (kJ kg mol−1)
GC volumetric gas flow rate in

bubble phase (m3 s−1)
GI volumetric gas flow rate in

dense phase (m3 s−1)
H expanded bed height for the

fluidized-bed (cm)
−�H1 overall heat of A→ B (kJ kg mol−1)
−�H2 overall heat of B→ C (kJ kg mol−1)
k1 surface reaction rate constant for A→ B (s−1)
k′

1 pre-exponential factor for
k̄1 (cm3 kg−1 catalyst s)

k̄1 reaction rate constant for A→ B
(=k1KAC̄m) (cm3 kg−1 catalyst s)

k2 surface reaction rate constant for B→ C (s−1)
k′

2 pre-exponential factor for̄k2

k̄2 reaction rate constant for B→ C
(=k2KBC̄m) (cm3 kg−1 catalyst s)

KA adsorption equilibrium constant for
component A (cm3 kg mol−1)

KB adsorption equilibrium constant for
component B (cm3 kg mol−1)

Lei Lewis number of componenti
(heat capacity/mass capacity of
componenti)

QE assumed in the model to be equal
to QEi andQH (s−1)

QEi mass exchange coefficient (s−1)
QH heat exchange coefficient (s−1)
ri rate of reaction of componenti

(kg mol kg−1 catalyst s)
Ri rate of disappearance of component

i (kg mol kg−1 catalyst s)

t normalized time (time/heat capacity
of the system)

T temperature of the dense phase (K)
T̄ temperature of the bubble phase (K)
T̄f feed temperature (K)
Tref reference temperature (K)
U superficial flow velocity of the gas

in the bed (cm s−1)
Umf minimum fluidization velocity of

the solid (cm s−1)
XA dimensionless dense phase concentration

of the reactant A
XB dimensionless dense phase concentration

of the product B
Xif dimensionless feed concentration

of componenti
X̄BH dimensionless bubble phase concentration

of B at the exit of the reactor
Y dimensionless dense phase temperature
Yf dimensionless feed temperature to the

reactor (base value)

Greek symbols
α1 dimensionless pre-exponential factor

for A → B (=(1 − ε)ρsk
′
1) (s−1)

α2 dimensionless pre-exponential factor
for B → C (=(1 − ε)ρsk

′
2) (s−1)

β1 dimensionless overall exothermicity factor
for A → B (=−(�H)1Cref/ρfCpfTref)

β2 dimensionless overall exothermicity factor
for B → C (=−(�H)2Cref/ρfCpfTref)

β̄ reciprocal of the residence time of the bed
ε voidage occupied by the gas in the

dense phase
φH dimensionless effective heat capacity

of the dense phase (=(1 − ε)Cpsρs/Cpfρf )

φi dimensionless effective mass capacity
of the componenti (= ε + (1 − ε)ρsKiC̄m)

γ1 dimensionless activation energy for
A → B (=E1/RTref)

γ2 dimensionless activation energy for
B → C (=E2/RTref)

ρs density of the solid catalyst
(kg catalyst cm−3)

ρf density of the gas (kg cm−3)

dehydrogenation of butene to butadiene [8] and ethylben-
zene to styrene [9].

The objectives of this work are two-fold. The first ob-
jective is to provide a unified framework, using the singu-
larity theory and continuation techniques for the analysis
of static bifurcation induced in the reactor by the con-
secutive reactions network. The relative simplicity of the
model equations allows the description of the steady-state
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behavior of the reactor in form of a single algebraic equa-
tion. It is shown that a general and practical picture of the
different stability phenomena in the reactor can be drawn in
a systematic and quite useful manner. The practical effect
of these branching phenomena on the yield of the interme-
diate product are also discussed. The second objective of
the paper is to study the dynamic bifurcation of the reactor.
In contrast to linear systems, it is known that structurally
stable periodic solutions can exist for nonlinear systems.
The ability of the reactor model to predict sustained oscil-
lations is investigated. A strong focus is made on the effect
of Lewis numbers on the existence and the nature of oscil-
latory behavior in the reactor. It is known that for gas–solid
catalytic systems, the mass capacities of a strongly
chemisorbed component may exceed the heat capacity of
the system and the Lewis numbers may vary form unity
[10]. The important effect of chemisorption capacities on
the dynamic behavior of gas–solid catalytic systems has
been recognized by a number of investigators [11–13]. The
combination of both static and dynamic branching phenom-
ena helps to construct a complete picture of the different
modes of behavior in the reactor.

The organization of the paper includes a presentation of
the model of the reactor. Static analysis is carried out first
followed by a study of the dynamic behavior. For the sake
of clarity, the mathematical details of the singularity theory
are omitted from the analysis. Most of the related materials
about the theory can be found in the referenced textbook
[1] or in the useful summaries provided by Alhumaizi and
Aris [4].

2. Process model

The equations in dimensionless form for the reactor dense
phase material and energy balances are given by the follow-
ing three non-linear differential equations:

1

LeA

dXA

dt
= β̄(XAf − XA) − α1 exp

(
−γ1

Y

)
XA (1)

1

LeB

dXB

dt
= β̄(XBf − XB) + α1 exp

(
−γ1

Y

)
XA

−α2 exp
(
−γ2

Y

)
XB (2)

dY

dt
= β̄(Ȳf − Y ) + α1β1 exp

(
−γ1

Y

)
XA

+α2β2 exp
(
−γ2

Y

)
XB (3)

where XA, XB are the dimensionless concentrations of
components A and B in the reactor dense phase, andY is
the dimensionless dense phase temperature. A schematic
diagram of the two-phase model of the reactor is given in
Fig 1. The bubble-phase mass and heat balances equations

Fig. 1. Schematic diagram of the two-phase model of the reactor.

are assumed to be at pseudo-steady state because of neg-
ligible mass and heat capacities. TheLei are the Lewis
numbers representing the ratio between the heat capacity
of the system and the mass capacities for the components.
The αi = (1 − ε)ρski are the normalized pre-exponential
factors for the two reactions while theβi = −�Hi /ρfCpfTf
represent the dimensionless overall exothermicity fac-
tors. The γi are the dimensionless activation energies
and β̄ is the reciprocal of the effective residence time of
the bed.

The model assumptions and detailed derivation are sum-
marized in Appendix A. This two-phase model represents
one of the relatively few dynamic models in the literature
for non-isothermal fluidized-bed catalytic reactors that take
into its formulation the heats and mass transfer resistances
between the dense and bubble phase. The two-phase models
were used by Choi and Ray [14] to model and control in-
dustrial polyethylene reactors. They were also used for the
dynamic analysis of type IV industrial fluid catalytic crack-
ing units [15].

Before we present the results of the analysis a final note
should be made about the effect of Lewis numbersLeA and
LeB. Dynamic models that assume negligible chemisorption
capacities of the different component on the catalyst yield
large values forLeA andLeB. The mass balance equations
(1)–(3), therefore, predict extremely fast response for con-
centrationsXA andXB compared with the response of the
temperatureY . In this caseXA and XB can be assumed
at pseudo-steady state all the time. Under these physically
questionable assumptions the system becomes dynamically
one-dimensional and most of the dynamic characteristic
of the system are therefore lost. In the present model the
chemisorption capacity of the solid catalyst in the dense
phase is taken into consideration and the richness of the dy-
namics associated with the relaxation of these assumptions
are demonstrated.
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3. Static bifurcation

The steady-state equations are obtained by setting the
left-hand sides of Eqs. (1)–(3) to zero. Eqs. (1) and (2) in
particular would yield

XA = β̄XAf

β̄ + α1 exp(−γ1/Y )
(4)

and

XB = β̄XBf + α1XA exp(−γ1/Y )

β̄ + α2 exp(−γ2/Y )
(5)

By introducing Eq. (4) into Eq. (5) and then into the
steady-state form of Eq. (3), a single algebraic equation is
obtained forY ,

F(Y ) := α1α2β̄ exp

(
−γ1 + γ2

Y

)
f1(Y )

+α1β̄
2 exp

(
−γ1

Y

)
f2(Y )

+α2β̄
2 exp

(
−γ2

Y

)
f3(Y ) − β̄3(Y − Yf ) (6)

with

f1(Y ) := (β1 + β2)XAf + β2XBf − Y + Yf (7)

f2(Y ) := β1XAf − Y + Yf (8)

f3(Y ) := β2XBf − Y + Yf (9)

The steady-state equation (Eq. (6)) depends on all the model
parameters expect the Lewis numbersLeA andLeB.

We are interested in the way the steady stateY depends
on the positive system parameters. The feed temperatureYf
appearing explicitly in Eq. (6) is selected to be the bifurca-
tion parameter. For this kind of equation the singularity the-
ory defines two types of codimension-one singularities that
can be found, namely hysteresis (Fig. 2(a)), isola–mushroom
(Fig. 2(b) and (c)) and double limit (Fig. 2(d) and (e)). Pitch-
fork (codimension-two) (Fig. 2(f)) singularity can also be
defined for the algebraic equation.

3.1. Hysteresis singularity

The conditions for the appearance/disappearance of a hys-
teresis loop are

F = FY = FYY = 0 (10)

that is the point should be a steady-state point (F = 0)
and the first two partial derivative ofF with respect toY
must vanish. In addition a number of other derivatives must
remain non-zero, namelyFYf , FYYf andFYYY.

The above conditions form the boundaries of the hystere-
sis singularity. Fig. 3 shows these boundaries in the param-
eter space(XAf , β̄). The values of the other parameters are
shown in Table 1. The boundaries divide the parameter space

Table 1
Model nominal parameters used in simulations

Parameter Value

A 3000 cm2

U 10.0 cm s−1

Umf 0.875 cm s−1

φ 1.8
α 19.5
ε 0.4
QE 2.0
H 100 cm
α1 108 s−1

α2 1011 s−1

β1 0.4
β2 0.6
γ1 18.0
γ2 32.0
LeA 1.0
LeB 0.454545
XAf 1.0
XBf 0.0
Yf 0.5
β̄ 0.2

in four regions. The conditionsFYf , FYYf and FYYY were
evaluated numerically along the hysteresis surface and no
point was found to violate the conditions. When crossing the
boundaries in Fig. 3, the number of static limit points (SLP)
in the bifurcation diagrams increases/decreases by two. Re-
gion (a) is characterized, for any combinations ofXAf andβ̄
by the absence of static limit points, i.e. unique steady-state
solution. The expected behavior in this region is shown in the
continuity diagram of Fig. 4(a1) obtained, for example with
(XAf , β̄) = (0.15,0.2). The software package AUTO [16]
was used to generate the continuity diagrams. A monotonic
increase in the temperatureY with the feed temperateYf can
be observed. The yield of the desired intermediate product,
shown in Fig. 4(a2), reaches its maximum of 0.91841 at the
feed temperature of 0.81367. When crossing the boundary
separating regions (a) and (b) in Fig. 3 two static limit points
are born. A hysteresis with a maximum three steady-state
solutions characterize the nature of the system in region (b).
Fig. 5(b1) shows an example of the behavior in this region
obtained with(XAf , β̄) = (0.4,0.2). The maximum yield
0.91126 occurs (Fig. 5(b2)) at the stable branch at the value
of Yf = 0.89265. Region (c) on the other hand is charac-
terized by the presence of four limit points since two ex-
tra SLP are born when crossing the boundary separating
regions (b) and (c). A maximum of five steady-state solu-
tions are expected in this region, as it can be seen in the
continuity diagram of Fig. 6(c1) obtained with(XAf , β̄) =
(0.6,0.2). In addition to two stable low and high temper-
ature branches a third stable branch exists in the middle.
The maximum yield of 0.91124 occurs at the stable branch
at Yf = 0.81367 (Fig. 6(c2)). When crossing the region (c)
two limit points disappear and the system is characterized
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Fig. 2. Examples of singularities: (a) hysteresis; (b) isola; (c) mushroom; (d–e) double limit; (f) pitchfork.

Fig. 3. Branch sets for the hysteresis singularity in the parameter space
(XAf , β̄).

as in region (b) with the existence of three steady solutions
for some range of the feed temperature. In all these cases,
hysteresis introduces dangerous operations for the reactor
since any abrupt change in the operating parameters can
cause the system to jump from high yield points to low yield
operating points.

The same three modes of behavior can be found in the
parameter space(XAf , γ1) and(XAf , γ2) (Fig. 7(a) and (b)).
It can be seen from these figures that for given values of
dimensionless activation energiesγ1 andγ2, the multiplicity
region is favored by high values of the feed concentration
XAf . Moreover, smaller values ofγ1 and higher values of
γ2 also favor the occurrence of multiplicity. Fig. 8 shows an
example of behavior for region (b) of Fig. 7(a) for values
of (XAf , β̄, γ1) = (0.4,0.2,28.0), it can be seen that the
maximum yield occurs in the unstable region. The optimum
operation of the reactor requires therefore a tight control
around the unstable point.
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Fig. 4. Continuity diagrams of temperature and yield for region (a) of
Fig. 3.

3.2. Double limit singularity

The existence of four static limit points in the model is an
indication of potential richness, since the relative location of
the limit points can change in the bifurcation diagrams. A
typical example of this behavior is provided by the double
limit singularity (Fig. 2(d) and (e)) where the number of
static limit points does not change but their relative positions
do. This singularity is defined by the following relations

F(Y1) = F(Y2) = 0 (11)

and

FY (Y1) = FY (Y2) = 0 (12)

with

Y1 �= Y2 (13)

These relations require that two distinct pointsY1 and Y2
should satisfy steady state and also limit point conditions.
Fig. 9 shows the boundaries of the double limit singularity
in the parameter space(XAf , β̄). The region of four static
limit points (region (c) of Fig. 3) can be in fact divided
in two different subregions. Fig. 10(c1) and (c2) show the
static behavior for regions c1 and c2, respectively. It can be
seen that the relative location of the limit points(SLP2) and

Fig. 5. Continuity diagrams of temperature and yield for region (b) of
Fig. 3, solid — stable branch; dash — unstable; circle — static limit point.

Fig. 6. Continuity diagrams of temperature and yield for region (c) of
Fig. 3, solid — stable branch; dash — unstable; circle — static limit point.
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Fig. 7. Branch sets for the hysteresis singularity in the parameter space
(XAf , γ1) and (XAf , γ2).

(SLP4) has changed in the two diagrams. This has the prac-
tical effect of narrowing the range of the middle stable re-
gion (between SLP2 and SLP3) in region c2. The maximum
yield is therefore likely to occur at an unstable branch in this
region. The double limit variety can also be seen as horizon-
tal lines in the parameter spaces(XAf ,LeA) and(XAf ,LeB)

(Fig. 11(a) and (b)).

3.3. Isola and mushroom

The third possible qualitative change that can occur in the
steady-state locus is the appearance of an isola (Fig. 2(b))
and the growth of an isola into a mushroom (Fig. 2(c)).

Fig. 8. Continuity diagram for region (b) of Fig. 7(a) showing the maxi-
mum yield occurring in the unstable region.

Fig. 9. Branch sets for the double limit singularity in the parameter
space(XAf , β̄), solid — boundary for the hysteresis singularity; dash —
boundaries for the double limit singularity.

Fig. 10. Continuity diagrams in regions c1 and c2 of Fig. 9. The position
of SLP2 and SLP4 has changed, solid — stable branch; dash — unstable;
circle — static limit point.

The requirements for these two changes in the steady-state
behavior are that

F = FY = FYf = 0 (14)

with the additional requirements that

FYYf �= 0, FYY �= 0, FYf Yf �= 0 (15)

Taking the derivative of Eq. (6) with respect to(Yf ) yields

− FYf = α1α2β̄ exp

(
−γ1 + γ2

Y

)
+ α1β̄

2 exp
(
−γ1

Y

)

+α2β̄
2 exp

(
−γ2

Y

)
+ β̄3 (16)
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Fig. 11. Branch sets for the double limit singularity in the parameter
space(XAf ,LeA ) and (XAf ,LeB), solid — boundary for the hysteresis
singularity; dash — boundaries for the double limit singularity.

Since all the terms involved in this equations are posi-
tive, the requirement thatFYf vanishes is satisfied only
for the physically unrealistic case of̄β = 0. The model,
therefore, cannot exhibit an isola or mushroom singularity.
The same result holds for any bifurcation parameter other
thanYf .

3.4. Pitchfork and higher order singularities

In order for the single scalar function to undergo a pitch-
fork bifurcation (Fig. 2(f)) it is sufficient to have

F = FY = FYf = FYY = 0 (17)

and

FYYf �= 0, FYYY �= 0 (18)

Under these conditions the functionF is equivalent to a
pitchfork normal form. Since the condition of the exis-
tence of a pitchfork includes the condition(FYf = 0) as
in the case of isola and mushroom, the model, therefore,
cannot exhibit codimension two singularity or a higher
one.

The analysis of the static bifurcation has revealed that the
double limit variety is the highest singularity the model can

Fig. 12. Complete static and dynamic branch set in the parameter space
(XAf , β̄), solid — hysteresis branch set; bold — Hopf bifurcation curve.

predict. In the next section we carry out an investigation of
the dynamic bifurcation of the model.

4. Dynamic bifurcation

The existence of periodic solutions, i.e. Hopf points
in the model is associated with a change in the equilib-
rium of singular points when a single pair of eigenvalues
of the linearized system crosses the imaginary axis. The
three-dimensional system has a Hopf bifurcation point

Fig. 13. Complete static and dynamic branch set in the parameter space
(XAf ,LeA ) and (XAf ,LeB), solid-hysteresis branch set; dash-Hopf bifur-
cation curve; semi dash – double limit singularity.
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Fig. 14. Continuity diagrams for the nine regions (b)–(j) of Fig. 13(a), solid — stable branch; dash — unstable; circle — static limit point; square —
Hopf point; bold line — periodic branch.
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Fig. 14. (Continued).

when the Jacobean matrix has pure imaginary eigenvalues.
The Jacobean matrix for this model is

J =

 f1XA f1XB f1Y
f2XA f2XB f2Y
f3XA f3XB f3Y


 (19)

wheref1, f2 andf3 denote the right-hand sides of the mass
balances (Eqs. (1)–(3)). The eigenvalueλ of the Jacobean
matrix are the solutions of the characteristic matrix equation,

−λ3 + S1λ
2 − S2λ + S3 = 0 (20)

whereS1, S2 andS3 are the three invariants ofJ ,

S1 = j11 + j22 + j33 (21)

Fig. 15. Time traces showing the burst in temperature in the periodic branch of region (h): (a1–c1) Yf = 0.800857; (a2–c2) Yf = 0.8009; (a3–c3) Yf = 0.830.

S2 = det

(
j11 j12
j21 j22

)
+ det

(
j22 j23
j32 j33

)

+det

(
j11 j13
j31 j33

)
(22)

S3 = det(J ) (23)

The j11, j12, . . . are the elements ofJ . The conditions of
Hopf bifurcation in terms of the coefficientsS1, S2 andS3
can be derived by settingλ = iw into Eq. (20) to yield,

F1 := S1S2 − S3 = 0 (24)

S2 > 0 (25)
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4.1. Codimension 1 singularity

The simplest interactions between a Hopf point and a
static limit point occurs when the imaginary part of the com-
plex conjugate eigenvalue pair goes to zero. This degener-
acy, called theF1 degeneracy [1], is defined by solving the
steady-state equation(F = 0) (Eq. (6)), the conditionS2 =
0 and the static limit point conditionsS3 = 0. Fig. 12 shows
the complete static and dynamic bifurcation diagrams in the
parameter space(XAf , β̄). When crossing the boundaries for
the F1 curve the number of Hopf points in the continuity
diagrams increases/decreases by one. It can be seen that in
the parameter space(XAf , β̄) (Fig. 12), the Hopf boundary
is almost identical to the lower boundary separating regions
(a) and (b). Therefore, the model admits a Hopf point in all
the regions of multiplicity, i.e. regions above (a). The com-
plete static and dynamic branching can be better seen in
the parameter space(XAf ,LeA) and (XAf ,LeB) (Fig. 13).
It can be seen that the hysteresis boundaries are insensitive
to changes in the Lewis numbers. They do not affect the
static behavior, since they do not appear in the static equa-
tion (Eq. (6)). TheF1 degeneracy curve (indicated by a dash
line) forms a loop tangent to two static branches and also
crosses the double limit variety. This adds interesting fea-
tures to the system behavior as a total of 10 qualitatively
different regions can be delineated.

Region (a) is characterized as in Fig. 4(a1) with the ab-
sence of static or Hopf point, i.e. unique stable solutions.
When crossing region (b) two static limit point (SLP) and a
Hopf point (HB) are born, since both the hysteresis and the
F1 lines are crossed. The continuity diagram for this region,
(Fig. 14(b)), shows three steady-state branches and also sta-
ble periodic branches in the vicinity of the Hopf point. The
periodic branches emanating from the HB terminate ho-
moclincally as they collide with the static branches. When
moving to region (c) two extra limit points and an extra Hopf
point are born, since both the hysteresis and theF1 curve
are again crossed. This region is characterized, respectively,
by the occurrence of SLP, SLP, HB, SLP, SLP, HB points.

Table 2
Summary of the stability characteristics for the different regions of the branch setsa

Region Figures Static and dynamic bifurcation points

a 3, 7(a) and (b), 13(a) and (b) Uniqueness
b 3, 7(a) and (b), 13(a) and (b), 14(b) SLP, SLP, HB
c 13(a) and (b), 14(c) SLP, SLP, HB, SLP, SLP, HB
d(∗) 13(a) and (b), 14(d) SLP, SLP, HB, SLP, SLP, HB
e 13(a) and (b), 14(e) SLP, SLP, SLP, SLP, HB
f(∗) 13(a) and (b), 14(f) SLP, SLP, SLP, SLP, HB
g 13(a), 14(g) HB, SLP, SLP, HB, SLP, SLP, HB
h 13(a) and (b), 14(h) HB, SLP, SLP, HB
i 13(a), 14(i) HB, SLP, SLP, SLP, SLP, HB
j(∗) 13(a), 14(j) HB, SLP, SLP, SLP, SLP, HB
k 13(b) SLP, SLP, SLP, SLP
l(∗) 13(b) SLP, SLP, SLP, SLP

a The region indicated by (∗) and the region directly before it are located on opposite sides of the double limit variety. Therefore, the relative location
of SLP changes in the two regions.

Fig. 16. Time traces showing multistability, (a) high temperature at-
tractor obtained with initial conditions(XA , XB, Y ) = (0.5,0,0.5);
(b) low temperature attractor obtained with initial conditions
(XA , XB, Y ) = (0.01,0.,1.5); (c) period oscillations obtained with initial
conditions(XA , XB, Y ) = (0.10049,0.4984,0.9525).

Fig. 14(c) shows the continuity diagram in this region.
Again the two Hopf points introduce stable periodic behav-
ior in two different regions of the parameter space. When
crossing the line of double limit variety (region (d)), the
number of static and Hopf points does not change although
their relative positioning do, as shown in Fig. 14(d). Mov-
ing to region (e), one Hopf point disappears as one branch
of theF1 curve is crossed and the system is characterized,
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respectively, by the occurrence of four limit points and a
Hopf point (SLP, SLP, SLP, SLP, HB). The continuity di-
agram is shown in Fig. 14(e). When crossing the double
limit variety (region (f)) the same number of limit points
and Hopf points is found, although the relative positioning
of limit points change, as shown in Fig. 14(f).

When crossing region (g) three branches of theF1 degen-
eracy curve are crossed and therefore a third HB point ap-
pears. Region (g) is characterized with the presence in this
order of HB, SLP, SLP, HB, SLP, SLP, HB. The continuity
diagram is shown in Fig. 14(g). The third Hopf can be seen
to lie close to the static limit point. Three regions of periodic
behavior can be found in the model.

When moving from region (g) to region (h) one HB point
disappears as well as two static limit points. Region (h) is
characterized by the presence in this order of HB, SLP, SLP,
HB (Fig. 14(h)). This region has interesting features, since
it is the only region in the diagram where sustained oscilla-
tions do not coexist with any static branch. For any values of
Yf between the smallest Hopf point(HB1) (Yf = 0.800857)
and the first limit point(SLP1) (Yf = 0.932258), the system
will settle on sustained oscillations for any choice of initial
conditions. Moreover the stable periodic branch emanating
from the Hopf point HB1 loses its stability through Torus
bifurcation and the resulting oscillations present a quite dan-
gerous situation for the reactor since a sudden ‘burst’ in
temperature is observed all along the periodic region. This
situation is explained in Fig. 15 showing time traces and
phase plane diagrams for three values of the feed tempera-
ture Yf . Very close to the Hopf point, i.e.Yf = 0.800857,
the system, as expected, exhibits a stable limit cycle with
small oscillations (Fig. 15(a1)–(c1)). However, when the feed
temperatureYf moves even slightly higher(Yf = 0.8009)
a dangerous burst in the temperature occurs. The temper-
ature jumps to very high values (more than 8.5), exceed-
ing more than 10 times the mean value ofY = 0.8 for the
limit cycle. This sudden burst is also accompanied by a lost
of stability as it can be seen in the time trace of interme-
diate component (B) (Fig. 15(b2)) and in the phase plane

Table 3
Summary of the stability characteristics for the different regions of the branch sets

Region Coexistence of oscillations
with low temperature branch

Coexistence of oscillations
with high temperature branch

Coexistence of oscillations with
middle temperature branch

Existence of oscil-
lations alone

a N N N N
b Y N N N
c Y Y Y N
d Y Y Y N
e Y N N N
f Y N N N
g Y Y N N
h Y N N Y
i Y N N N
j Y N N N
k N N N N
l N N N N

(Fig. 15(c2)). These diagrams suggest a quasi-periodic be-
havior. The maximum Lyapunov exponent, computed by the
algorithm of Wolf et al. [17], is zero further confirming the
quasi-periodic nature of the attractor. As the feed tempera-
ture moves to higher values,(Yf = 0.830) the oscillations
become more erratic and the same dangerous situation pre-
vails (Fig. 15(a3)–(c3)). The maximum Lyapunov exponent
of the system is 0.02145 confirming the chaotic nature of the
oscillations. It should be also noted that the system, for this
region (h), also admits a smaller region of periodic behav-
ior around the second Hopf point(HB2) (Yf = 0.933797).
However, these oscillations coexist with the static branch.

Moving to regions (i) and (j), two static limit points are
born as well as a Hopf point. Regions (i) and (j) are charac-
terized by the presence in this order of HB, SLP, SLP, SLP,
SLP, HB. The relative location of limit points changes in
regions (i) and (j) (Fig. 14(i) and (j)) since they are located
on the different sides of the double limit variety.

Some of these 10 regions can be found in Fig. 13(b) show-
ing the complete branching phenomena in the parameter
space(XAf ,LeB). However, two new regions are added by
this diagram. Region (k) is characterized by the occurrence
of four static limit points but with no Hopf points. Region
(l) is similar to region (k) expect for the relative location of
the static limit points.

In all of these regions (expect regions (a, h, l, k)) the lo-
cation of the periodic branch between static branches intro-
duces in the system the phenomenon of multistability where
self sustained oscillations coexist with the high and low con-
version static branch. Fig. 16(a)–(c) show time traces for
(XAf ,LeA , Yf ) = (0.6,0.5,0.75213) and for three sets of
initial conditions. The periodic behavior in this region is not
orbitally stable since different initial conditions can break it
and push it out of its domain of attraction, resulting in the
annihilation of the oscillations. Tables 2 and 3 summarize
the stability characteristics of the 12 regions found in the
parameter space(XAf ,LeA) and(XAf ,LeB).

A final note should be made about the impact of oscil-
latory behavior on the yield of the intermediate product.
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Different simulations were carried out in regions of periodic
behavior. They have shown that the average yield deterio-
rates in these regions and thus oscillatory behavior is to be
eliminated either by choosing appropriate startup conditions
or by a tight control.

5. Conclusions

A general and useful picture of static and dynamic
branching phenomena in a gas–solid bubbling fluidized-bed
catalytic reactor has been constructed using the singular-
ity theory and continuation techniques. Both the static and
dynamic equations were expressed as single algebraic equa-
tions. It was shown that the highest static singularity the
system can exhibit is the double limit variety. Three different
static regions were found in the system: a region of unique-
ness, region of three solutions and regions of maximum five
solutions. The analysis of dynamic bifurcation has shown
that the system can predict codimension one singularities
for a wide range of parameters. The complete static and dy-
namic bifurcation analysis was useful in delineating a total
of 12 dynamically different regions. Periodic behavior can
be found in 10 regions. In 9 of the 10 regions the sustained
oscillations are not orbitally stable since they coexist with
low and high temperature static branches. However, in one
region sustained aperiodic oscillations can be found that
do not coexist with any static branches as they are the sole
attractors to the system. However, these oscillations present
a dangerous situation for the system as a sudden burst in
the temperature is observed, requiring therefore a tight con-
trol of the reactor. The effect of the branching phenomena
on the yield of the intermediate product has shown that
the maximum yield can occur for some regions in unstable
branches and that oscillatory behavior deteriorates the yield
and should be controlled.

Appendix A. Derivation of the model of the
fluidized-bed catalytic reactor

The following assumptions are used in the derivation of
the unsteady-state mass and energy balance for the reactor
model.

• The gas in the bubble phase is assumed to be in plug flow.
• The dense phase gas is perfectly mixed. This assumption

is justified for strongly adsorbed gases.
• The extent of the reaction in the bubble-cloud phase is

negligible. This assumption is justified for small particles
size (dp ≤ 150�m) and high flow rates giving rise to fast
rising bubbles and negligible cloud phase.

• Negligible mass and heat transfer resistances between the
solid particles and the dense phase gas.

• An average value of bubble size and hence an average
value of the exchange parameters between the dense and
bubble phase are used.

• Negligible heat of adsorption.
• Both reactions are of first order.

Unsteady state mass balance for the dense phase:

φiAIH
dCi

dt
= GI(Cif − Ci) + QEiAC

∫ H

0
(C̄i − Ci)dh

−ρs(1 − ε)AIHRi (A.1)

Unsteady state heat balance for the dense phase:

φHAIH
dT

dt
= GIρfCpf (T̄f − T ) + ρfCpfQHAC

×
∫ H

0
(T̄ − T )dh + AIH(1 − ε)ρs

×
2∑

i=1

ri(−�Hi) (A.2)

Mass and heat balances in the bubble phase:
Both the mass balances and heat balances are assumed at

at pseudo-state because of negligible mass and heat capaci-
ties, and are given by

GC
dC̄i

dh
= −QEiAC(C̄i − Ci) (A.3)

GC
dT̄

dh
= −QEHAC(T̄ − T ) (A.4)

with the boundary conditions,

At h = 0, Ci = Cif and T̄ = T̄f (A.5)

Eqs. (A.3)–(A.5) are solved analytically. The resulting solu-
tions are used to evaluate the integral in Eqs. (A.1) and (A.2).
Assuming thatQEA = QEB = QEC = QH and casting the
equations in dimensionless form gives the model equations
as described in the text.

The yield of the reactor is given by

y = GIXB + GCX̄BH

(GI + GC)XAf

(A.6)

where

X̄BH = XB + (XBf − XB)e
−a (A.7)

and

a = QEHAC

GC
(A.8)

β̄ is the reciprocal of the effective residence time of the bed
and is given by

β̄ = GI + GC(1 − e−a)

AIH
(A.9)

Calculation of the two-phase model parameters [18–21]:

GB = A(U − φUmf) (A.10)
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GC = GB

(
1.0 + ε

α − 1.0

)
(A.11)

GI = AU − GC (A.12)

AC = εGB

(α − 1.0)Umf
(A.13)

AI = A − AC (A.14)
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