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Abstract

The singularity theory and continuation techniques are combined to classify the static and dynamic behavior of a non-isothermal gas—solid

fluidized-bed catalytic reactor with consecutive exothermic reactiekésﬁlg C. Itis shown that the double limit variety with five solutions

is the highest static singularity the model can predict. The model is also capable of predicting self sustained oscillations for a wide range
of Lewis numbers. The effect of the model parameters on its static and dynamic bifurcation is analyzed. Practical criteria are also derived
for the effect of the branching phenomena on the yield of the intermediate product in the reactions network. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction provide a general framework for classifying branching phe-
nomena in which different kinds of multiplicity in the non-
Non-linear models of reactive systems can exhibit a va- linear model can be expected. The theory has found several
riety of behavior depending on the values of the system applications in the chemical engineering field since Balako-
parameters. For certain values of the parameters the reactaiah and Luss [2] analyzed the multiplicity phenomenon
tive system can exhibit simple or complex quasi-periodic of the simple CSTR. D’'anna et al. [3] and Alhumazi and
as well as chaotic oscillations. An important objective for Aris [4] provided other applications of the theory in their
the analysis of dynamics of reactive systems is the classi-study of the stability characteristics of autocatalytic reactive
fication of the parameter space into regions where differ- systems. Most of the comprehensive studies in the litera-
ent types of behavior can be delineated. Besides increasture focused on homogenous and pseudo-homogenous re-
ing the understanding of the reactive system, this classifi- active systems. Recently Subramanian and Balakotaiah [5]
cation can have practical impact on the operation of the extended the classification to a heterogeneous well-mixed
reactor, since it can allow the determination of boundaries reactor.
between safe and runaway regions and the delineation of In this contribution we extend the study of heteroge-
regions of undesired oscillations or unstability. The clas- neous systems by a classification of the static and dy-
sification of the parameter space is however a challengingnamic behavior of a non-isothermal gas-solid catalytic
task since the number of parameters in any reactive sys-bubbling fluidized-bed reactor. A consecutive reaction net-

tem model can be quite large. A systematic classification work AXLBX2C is taking place in the reactor where the
in the multidimensional parameter space can be a difficult yegjred product is the intermediate component (B). The
task without appropriate theoretical means. Various nonlin- proplem has practical applications. Besides the impor-
ear dynamics tools have been used in the literature for thetant industrial uses of fluidized-bed technology, there are
analysis of reactive systems. Among them the singularity cases in petrochemical industry where the reactor is oper-
theory [1] is recognized as being a useful tool since it can ated in a multiplicity region or where the maximum vyield
of the intermediate product occurs at an unstable point.
Abbreviations: HB, Hopf bifurcation point; SLP, static limit point Thgse S|tuat|ons_ mclu.de .the industrially important FCC
*Corresponding author. Fax:966-1-467-8770. unit [6], the partial oxidation ofo-xylene [7] as well as
E-mail address: aajbar@ksu.edu.sa (A. Ajbar). oxidative dehydrogenation reactions such as the oxidative
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Nomenclature

a
A
Ac
A

Ci

Le

O
OE;

two-phase paramete=QeHAC/Gc)
cross-sectional area of the bed @m
cross-sectional area of the bed occupied
by bubble phase (cfy
cross-sectional area of the bed occupied
by dense phase (éh

concentration of componentin the
dense phase (kg mol crd)

feed concentration of component

i (kgmolcnT3)

concentration of the component

i in the bubble phase (kg mol crf)
total concentration of active sites
(kg mol/kg catalyst)

specific heat of gas (kJ kg K)
specific heat of the catalyst (kJk§K)
reference concentration (kg mol cd)
activation energy for the reaction

A — B (kJkgmot?)

activation energy for the reaction

B — C (kJkgmot?)

volumetric gas flow rate in

bubble phase (Fs1)

volumetric gas flow rate in

dense phase (s 1)

expanded bed height for the
fluidized-bed (cm)

overall heat of A— B (kJ kg mol?)
overall heat of B~ C (kJ kgmot™)
surface reaction rate constant for-A B (s™1)
pre-exponential factor for

k1 (cmPkg~! catalyst s)

reaction rate constant for A- B
(=k1KaCm) (cmPkg~? catalyst s)
surface reaction rate constant forB C (s1)
pre-exponential factor fak

reaction rate constant for B> C
(=ko2KgCrm) (cmPkg? catalyst s)
adsorption equilibrium constant for
component A (crikg mol1)
adsorption equilibrium constant for
component B (crikg mol—1)

Lewis number of componerit

(heat capacity/mass capacity of
component)

assumed in the model to be equal
to Qg and Qn (s73)

mass exchange coefficient (9

heat exchange coefficient(§

rate of reaction of component

(kg mol kg™ catalyst s)

rate of disappearance of component
i (kgmolkg! catalyst s)

t normalized time (time/heat capacity
of the system)

T temperature of the dense phase (K)

T temperature of the bubble phase (K)

T feed temperature (K)

Tref reference temperature (K)

U superficial flow velocity of the gas
in the bed (cm3s?t)

Umg minimum fluidization velocity of
the solid (cms?)

Xa dimensionless dense phase concentration
of the reactant A

XB dimensionless dense phase concentration
of the product B

Xt dimensionless feed concentration
of component

XgH dimensionless bubble phase concentratior
of B at the exit of the reactor

Y dimensionless dense phase temperature

Y dimensionless feed temperature to the

reactor (base value)

Greek symbols
a1 dimensionless pre-exponential factor
for A — B (=(1— e)psk)) (s71)
az dimensionless pre-exponential factor
for B — C (=(1 — e)psky) (s71)
B1 dimensionless overall exothermicity factor
for A — B (=—(AH)1Crefl pt CpiTret)
B2 dimensionless overall exothermicity factor
. for B — C (=—(AH)2Cret/ pt C pt Tref)
B reciprocal of the residence time of the beg
€ voidage occupied by the gas in the
dense phase
oH dimensionless effective heat capacity
of the dense phase=(1 — €)C,sps/Cpt of)
i dimensionless effective mass capacity
of the component (= € + (1 — €)psK; Crm)
Y1 dimensionless activation energy for
A — B (=E1/RTyef)
V2 dimensionless activation energy for
B — C (=E2/RTref)
Os density of the solid catalyst
(kg catalyst cm®)
of density of the gas (kg cn¥)

dehydrogenation of butene to butadiene [8] and ethylben-
zene to styrene [9].

The objectives of this work are two-fold. The first ob-
jective is to provide a unified framework, using the singu-
larity theory and continuation techniques for the analysis
of static bifurcation induced in the reactor by the con-
secutive reactions network. The relative simplicity of the
model equations allows the description of the steady-state
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behavior of the reactor in form of a single algebraic equa-
tion. It is shown that a general and practical picture of the
different stability phenomena in the reactor can be drawn in f 1
a systematic and quite useful manner. The practical effect
of these branching phenomena on the yield of the interme-

diate product are also discussed. The second objective of Bubble phase Dense phase
the paper is to _study the dynarr_liq bifurcation of the reactor. Plug flow Perfect mixing
In contrast to linear systems, it is known that structurally

stable periodic solutions can exist for nonlinear systems.
The ability of the reactor model to predict sustained oscil-
lations is investigated. A strong focus is made on the effect N i
of Lewis numbers on the existence and the nature of oscil-
latory behavior in the reactor. It is known that for gas—solid
catalytic systems, the mass capacities of a strongly
chemisorbed component may exceed the heat capacity of
the system and the Lewis numbers may vary form unity
[10]. The important effect of chemisorption capacities on
the dynamic behavior of gas—solid catalytic systems has
been recognized by a number of investigators [11-13]. The
combination of both static and dynamic branching phenom-
ena helps to construct a complete picture of the different are assumed to be at pseudo-steady state because of neg-
modes of behavior in the reactor. ligible mass and heat capacities. The; are the Lewis
The organization of the paper includes a presentation of numbers representing the ratio between the heat capacity
the model of the reactor. Static analysis is carried out first of the system and the mass capacities for the components.
followed by a study of the dynamic behavior. For the sake The o; = (1 — €)psk; are the normalized pre-exponential
of clarity, the mathematical details of the singularity theory factors for the two reactions while the = — A H;/ps Cpt Tt
are omitted from the analysis. Most of the related materials represent the dimensionless overall exothermicity fac-
about the theory can be found in the referenced textbooktors. The y; are the dimensionless activation energies
[1] or in the useful summaries provided by Alhumaizi and and g is the reciprocal of the effective residence time of
Aris [4]. the bed.
The model assumptions and detailed derivation are sum-
marized in Appendix A. This two-phase model represents
2. Process model one of the relatively few dynamic models in the literature
for non-isothermal fluidized-bed catalytic reactors that take
The equations in dimensionless form for the reactor denseinto its formulation the heats and mass transfer resistances

phase material and energy balances are given by the follow-Petween the dense and bubble phase. The two-phase models

Yt Steam

Fig. 1. Schematic diagram of the two-phase model of the reactor.

ing three non-linear differential equations: were used by Choi and Ray [14] to model and control in-
dustrial polyethylene reactors. They were also used for the
1 dXa _ B(Xa, — Xa) — o1 exp(—ﬂ) Xa ) dynamic analysis of type IV industrial fluid catalytic crack-
Lea dr Y ing units [15].
Before we present the results of the analysis a final note
1 dXg _ Y1 should be made about the effect of Lewis numhsss and
Lo dr B(Xg; — XB) + o1 exp(—7> XA Les. Dynamic models that assume negligible chemisorption
¥o capacities of the different component on the catalyst yield
—2 exp<—7) XB ) large values folLes andLeg. The mass balance equations
(1)—(3), therefore, predict extremely fast response for con-
centrationsXa and Xg compared with the response of the
dy - V1 i
— =B —Y)+a1B1 exp(——) Xa temperatureY. In this caseXa and Xg can be assumed
dr Y at pseudo-steady state all the time. Under these physically
+a2B2 exp(—%) XB 3) questionable assumptions the system becomes dynamically

one-dimensional and most of the dynamic characteristic
where Xa, Xg are the dimensionless concentrations of of the system are therefore lost. In the present model the
components A and B in the reactor dense phase,Yarsl chemisorption capacity of the solid catalyst in the dense
the dimensionless dense phase temperature. A schematiphase is taken into consideration and the richness of the dy-
diagram of the two-phase model of the reactor is given in namics associated with the relaxation of these assumptions
Fig 1. The bubble-phase mass and heat balances equationare demonstrated.
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3. Static bifurcation Table 1
Model nominal parameters used in simulations
The steady-state equations are obtained by setting theParameter Value
Ieft—hand sides of. Egs. (1)—(3) to zero. Egs. (1) and (2) in °; 3000 cm?
particular would yield U 10.0cms?
- Un 0.875cmst
X
Xp = EA @ ¢ Lo
B+ arexp(—y1/Y) o 19.5
€ 0.4
and Oe 2.0
3 _ H 100cm
Xg = ﬂXB_f + a1 XA exp(—y1/Y) (5) o ppepe)
B+ azexp(—y2/Y) a2 10ts?
. . . . 0.4
By introducing Eq. (4) into Eq. (5) and then into the g; 0.6
steady-state form of Eq. (3), a single algebraic equation is ,, 18.0
obtained forY, ¥2 32.0
Lea 1.0
2 Y1t Y2 Les 0.454545
F(Y) = a1028 exp<_T> f1(Y) X 1.0
Xy 0.0
22 Y1
exp(—= Y Y 0.5
+arfexp(—12) fa(¥) Bf 05
— yz —
+frep(-2) s -y v (6
with
[Q) = (B1+ B2) XA + B2Xp — ¥ + 15 (7) in four regions. The conditiongy,, Fyy, and Fyyy were
evaluated numerically along the hysteresis surface and no
oY) = B1Xa — Y + 15 (8) point was found to violate the conditions. When crossing the
boundaries in Fig. 3, the number of static limit points (SLP)
f3(Y) = poXp, — Y + Y5 9) in the bifurcation diagrams increases/decreases by two. Re-

_ ion (a) is characterized, for any combinationskaf ands

The steady-state equation (Eq. (6)) depends on all the modeay the absence of static limit points, i.e. unique steady-state

parameters expect the Lewis numbeea andLes. solution. The expected behavior in this region is shown in the
We are interested in the way the steady statdepends  continuity diagram of Fig. 4 obtained, for example with

on the positive system parameters. The feed temper&fure (Xa,. ) = (0.15,0.2). The software package AUTO [16]

appearing explicitly in Eq. (6) is selected to be the bifurca- ya5 ysed to generate the continuity diagrams. A monotonic

tion parameter. For this kind of equation the singularity the- jncrease in the temperaturewith the feed temperatg can

ory defines two types of codimension-one singularities that e gpserved. The yield of the desired intermediate product,

can be found, namely hysteresis (Fig. 2(a)), isola—mushroomgpawn in Fig. 4(a), reaches its maximum of 0.91841 at the

(Fig. 2(b) and (c)) and double limit (Fig. 2(d) and (e)). Pitch-  feeq temperature of 0.81367. When crossing the boundary

fork (codimension-two) (Fig. 2(f)) singularity can also be = geparating regions (a) and (b) in Fig. 3 two static limit points

defined for the algebraic equation. are born. A hysteresis with a maximum three steady-state
o ] solutions characterize the nature of the system in region (b).
3.1. Hysteresis singularity Fig. 5(1) shows an example of the behavior in this region

N . obtained with(XAf,B) = (0.4,0.2). The maximum yield
The conditions for the appearance/disappearance of a hys0.91126 occurs (Fig. 5¢b) at the stable branch at the value

teresis loop are of ¥; = 0.89265. Region (c) on the other hand is charac-
F=Fy=Fy=0 (10) terized by the presence of four limit points since two ex-
tra SLP are born when crossing the boundary separating
that is the point should be a steady-state poifit£ 0) regions (b) and (c). A maximum of five steady-state solu-
and the first two partial derivative of with respect toY tions are expected in this region, as it can be seen in the
must vanish. In addition a number of other derivatives must continuity diagram of Fig. 69 obtained with(Xa,, B) =
remain non-zero, namelffy,, Fyy, and Fyyy. (0.6, 0.2). In addition to two stable low and high temper-

The above conditions form the boundaries of the hystere- ature branches a third stable branch exists in the middle.
sis singularity. Fig. 3 shows these boundaries in the param-The maximum yield of 0.91124 occurs at the stable branch
eter spacéXa,, f). The values of the other parameters are atY; = 0.81367 (Fig. 6(g)). When crossing the region (c)
shown in Table 1. The boundaries divide the parameter spacawo limit points disappear and the system is characterized



A. Ajbar et al./Chemical Engineering Journal 84 (2001) 503-516 507

L.

NO SOLUTION o

D

= X
> D
D

Q ®)

(e)

C
D@
O
D
-

"< ()

Fig. 2. Examples of singularities: (a) hysteresis; (b) isola; (c) mushroom; (d—e) double limit; (f) pitchfork.
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as in region (b) with the existence of three steady solutions
for some range of the feed temperature. In all these cases,
hysteresis introduces dangerous operations for the reactor
since any abrupt change in the operating parameters can
cause the system to jump from high yield points to low yield
operating points.

The same three modes of behavior can be found in the
parameter spad& a,, y1) and(Xa,, y2) (Fig. 7(a) and (b)).
It can be seen from these figures that for given values of
dimensionless activation energigsandy», the multiplicity
region is favored by high values of the feed concentration
Xa,. Moreover, smaller values gf; and higher values of
y» also favor the occurrence of multiplicity. Fig. 8 shows an
example of behavior for region (b) of Fig. 7(a) for values
of (Xa;, B, y1) = (0.4,0.2,280), it can be seen that the
maximum yield occurs in the unstable region. The optimum

Fig. 3. Branch sets for the hysteresis singularity in the parameter spaceoperation of the reactor requires therefore a tight control

(Xa: B).

around the unstable point.
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0.50 1.00 1.50
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Fig. 4. Continuity diagrams of temperature and yield for region (a) of
Fig. 3.

3.2. Double limit singularity

The existence of four static limit points in the model is an
indication of potential richness, since the relative location of
the limit points can change in the bifurcation diagrams. A
typical example of this behavior is provided by the double
limit singularity (Fig. 2(d) and (e)) where the number of
static limit points does not change but their relative positions
do. This singularity is defined by the following relations

F(Y1) =F(Y2) =0 (11)
and
Fy(Y1) = Fy(Y2) =0 (12)
with
Y1# Yo (13)

These relations require that two distinct pointsand Y>
should satisfy steady state and also limit point conditions.
Fig. 9 shows the boundaries of the double limit singularity
in the parameter spad&x;, 8). The region of four static
limit points (region (c) of Fig. 3) can be in fact divided
in two different subregions. Fig. 10(cand (¢) show the
static behavior for regionsy@nd @, respectively. It can be

seen that the relative location of the limit poin&LP,) and

A. Ajbar et al./Chemical Engineering Journal 84 (2001) 503-516

1.40 /
Y 1.05 —
0.70 : l : (b1)
0.75 0.88 1.00
YF
1.00
Yield 0.50 —
S 02)
0.00 T T T
0.75 0.88 1.00
YF

Fig. 5. Continuity diagrams of temperature and yield for region (b) of
Fig. 3, solid — stable branch; dash — unstable; circle — static limit point.
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(c1)
' ] r I
0.75 0.83
YF
1.00
Yield 0.50 — -~
0.00 —— | . T

0.75

YF

0.83

Fig. 6. Continuity diagrams of temperature and yield for region (c) of
Fig. 3, solid — stable branch; dash — unstable; circle — static limit point.
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Fig. 7. Branch sets for the hysteresis singularity in the parameter space
(Xa¢> v1) and (Xa;, v2)-

(SLPy) has changed in the two diagrams. This has the prac-
tical effect of narrowing the range of the middle stable re-
gion (between SLPand SLRB) in region ¢. The maximum
yield is therefore likely to occur at an unstable branch in this
region. The double limit variety can also be seen as horizon-
tal lines in the parameter spac@éa,, Lea) and(Xa,, Leg)

(Fig. 11(a) and (b)).

3.3. Isola and mushroom

The third possible qualitative change that can occur in the

steady-state locus is the appearance of an isola (Fig. 2(b))

and the growth of an isola into a mushroom (Fig. 2(c)).

0.70 —

0.00

Fig. 8. Continuity diagram for region (b) of Fig. 7(a) showing the maxi-
mum vyield occurring in the unstable region.
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(f) =~ 7 7 " (c))

XAF 0.75 ' (c1)
(b)
o~
0.00 T T
0.00 8.00

»
=lo -
1)

Fig. 9. Branch sets for the double limit singularity in the parameter
space(Xa,, B), solid — boundary for the hysteresis singularity; dash —
boundaries for the double limit singularity.
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/’SLPE
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0.75
YF

(c1)
I

0.83

SL/

T -~ SLP2

SLP;\\\
I

Y
0.90 —

/ a
(c2)

T

T

0.30 0.60

YF

0.90

Fig. 10. Continuity diagrams in regiong and ¢ of Fig. 9. The position
of SLP, and SLR has changed, solid — stable branch; dash — unstable;
circle — static limit point.

The requirements for these two changes in the steady-state
behavior are that

F=Fy=Fy=0 (14)
with the additional requirements that
FYYf7éov FYY#Os FYfo #O (15)

Taking the derivative of Eq. (6) with respect(ty) yields
vit+y2

£2) tenl-)

+aoB? exp(—%) + 83

— Fy, = a1a2p exp<—

(16)
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2.00
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(b)
(c2)
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0.00 I
0.00 1.00 2.00
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Fig. 11. Branch sets for the double limit singularity in the parameter
space(Xa,, Lea) and (Xa,, Leg), solid — boundary for the hysteresis
singularity; dash — boundaries for the double limit singularity.

Since all the terms involved in this equations are posi-
tive, the requirement thafFy, vanishes is satisfied only
for the physically unrealistic case @ = 0. The model,
therefore, cannot exhibit an isola or mushroom singularity.
The same result holds for any bifurcation parameter other

thanYs.

3.4. Pitchfork and higher order singularities

In order for the single scalar function to undergo a pitch-
fork bifurcation (Fig. 2(f)) it is sufficient to have

F=Fy=Fy=Fy=0 (17)
and
Fyy, #0, Fyyy #0 (18)

Under these conditions the functidh is equivalent to a
pitchfork normal form. Since the condition of the exis-
tence of a pitchfork includes the conditiqify, = 0) as
in the case of isola and mushroom, the model, therefore,
cannot exhibit codimension two singularity or a higher
one.

The analysis of the static bifurcation has revealed that the
double limit variety is the highest singularity the model can

A. Ajbar et al./Chemical Engineering Journal 84 (2001) 503-516

2.50
XAF 1.25 —

(b)
()
(b)
@)

0.00 ; I .

0.00 4.00 8.00
B

Fig. 12. Complete static and dynamic branch set in the parameter space
(Xa¢, B), solid — hysteresis branch set; bold — Hopf bifurcation curve.

predict. In the next section we carry out an investigation of
the dynamic bifurcation of the model.

4. Dynamic bifurcation

The existence of periodic solutions, i.e. Hopf points
in the model is associated with a change in the equilib-
rium of singular points when a single pair of eigenvalues
of the linearized system crosses the imaginary axis. The
three-dimensional system has a Hopf bifurcation point

2.00
! (A)
n ®
1
1 . - - ~ \
e L Y
XAF 1.00 — b ‘\ // @ " 0)
- , ]
10,/ @ @
Y ®)
a,
0.00 T @ T T
0.00 0.50 1.00
Le A
2.00
(B)
)
1
\ f ,
XAF 1.00 —| ® )
@ _ _ _ _ o
N /
(o) © , ®
w . ®_ - @
@
0.00 T T T
0.00 0.65 1.30
Le B

Fig. 13. Complete static and dynamic branch set in the parameter space
(Xa¢, Lea) and (X, , Les), solid-hysteresis branch set; dash-Hopf bifur-
cation curve; semi dash — double limit singularity.
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Fig. 14. Continuity diagrams for the nine regions (b)—(j) of Fig. 13(a), solid — stable branch; dash — unstable; circle — static limit point; square —

Hopf point; bold line — periodic branch.
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when the Jacobean matrix has pure imaginary eigenvalues.s2 — de
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1.80

Y 0.90 —

@

0.00 |

The Jacobean matrix for this model is

fixa Sixg Sy
J = foxa Jfoxg for
f3xa  f3xg far

where f1, f2 and f3 denote the right-hand sides of the mass g, — det(J)

Fig. 14. (Continued).

(19)

balances (Egs. (1)—(3)). The eigenvaluef the Jacobean

matrix are the solutions of the characteristic matrix equation, The ji1, ji2, ...

A3+ 512 — Son+S3=0

whereSs, S» and S3 are the three invariants of,

S1=j11+ jo2 + ja3

0.8422 — (al)
0.8419 —
> i
0.8417 —
0.8415 ———————
6000.0 9000.0
Time
0.1035
(b1)
0.1030 —|
m i
>
0.1025 —
0.1020 I : I
6000.0 9000.0
Time
T (c1
0.8420 —
> i
0.8418 —
T | T

0.1020 0.1025 0.1030
XB

J22

i1 J12
' ' J32

(
J21 J22

+det<

J23
J33

) + det
Ji1 13

J31 j33) (22)

(23)

are the elements af. The conditions of
Hopf bifurcation in terms of the coefficients, S> and S3
can be derived by setting= iw into Eq. (20) to yield,

(20)
F1:=8152—83=0 (24)
(21) S>>0 (25)
(a2) 6.00 (al)
8.00 —
J 4.00
> >
4.00 —
2.00
0.00 I : ' 0.00
6000.0  9000.0 5000.0 6000.0 7000.0
Time XB
0.50 B2) 0.50 b3
Q 0.25 Q o025
0.00 I . I 0.00 . .
6000.0  9000.0 5000.0 6000.0 7000.0
Time Time
10.00 T @ 8.00 ©3)
> 5.00 — >
0.00 —-
0.0 0.4 0.8
XB

Fig. 15. Time traces showing the burst in temperature in the periodic branch of region {t)) (& = 0.800857; (a—c,) ¥; = 0.8009; (a—c3) ¥; = 0.830.
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4.1. Codimension 1 singularity 080 3
The simplest interactions between a Hopf point and a i

static limit point occurs when the imaginary part of the com- 0.60 —

plex conjugate eigenvalue pair goes to zero. This degener-

acy, called thef; degeneracy [1], is defined by solving the — T

steady-state equatiai = 0) (Eqg. (6)), the conditiors, = 000 002 004

0 and the static limit point condition$s = 0. Fig. 12 shows t104

the complete static and dynamic bifurcation diagrams in the 1.50

parameter spad& a,, ). When crossing the boundaries for | (b)

the Fy curve the number of Hopf points in the continuity

diagrams increases/decreases by one. It can be seen that in Y 138

the parameter space&,,, 8) (Fig. 12), the Hopf boundary .

is almost identical to the lower boundary separating regions 1.25 e

(a) and (b). Therefore, the model admits a Hopf point in all 000 002  0.04

the regions of multiplicity, i.e. regions above (a). The com- t 1074

plete static and dynamic branching can be better seen in 0.969 —1

the parameter spad&(a,, Lea) and (Xx,, Les) (Fig. 13). i (©

It can be seen that the hysteresis boundaries are insensitive

to changes in the Lewis numbers. They do not affect the Y 0952

static behavior, since they do not appear in the static equa- 1

tion (Eq. (6)). TheF; degeneracy curve (indicated by a dash 0.935 —T—

line) forms a loop tangent to two static branches and also 30.00 30.05 30.10

crosses the double limit variety. This adds interesting fea- t10%4

tu_res to the_SyStem behavpr as a total of 10 qualitatively Fig. 16. Time traces showing multistability, (a) high temperature at-

different regions can be delineated. tractor obtained with initial conditiongXa, Xg,Y¥) = (0.5,0,0.5);
Region (a) is characterized as in Fig. A(avith the ab- (b) low temperature attractor obtained with initial conditions

sence of static or Hopf point, i.e. unique stable solutions. (Xa, Xg, Y) = (0.01, 0., 1.5); (c) period oscillations obtained with initial
When crossing region (b) two static limit point (SLP) and a conditions(Xa, Xg, ¥) = (0.10049 0.4984 0.9525.

Hopf point (HB) are born, since both the hysteresis and the

F1 lines are crossed. The continuity diagram for this region,

(Fig. 14(b)), shows three steady-state branches and also staFig. 14(c) shows the continuity diagram in this region.
ble periodic branches in the vicinity of the Hopf point. The Again the two Hopf points introduce stable periodic behav-
periodic branches emanating from the HB terminate ho- ior in two different regions of the parameter space. When
moclincally as they collide with the static branches. When crossing the line of double limit variety (region (d)), the
moving to region (c) two extra limit points and an extra Hopf number of static and Hopf points does not change although
point are born, since both the hysteresis and Fqpeurve their relative positioning do, as shown in Fig. 14(d). Mov-
are again crossed. This region is characterized, respectivelyjng to region (e), one Hopf point disappears as one branch
by the occurrence of SLP, SLP, HB, SLP, SLP, HB points. of the F; curve is crossed and the system is characterized,

Table 2

Summary of the stability characteristics for the different regions of the branch sets

Region Figures Static and dynamic bifurcation points
a 3, 7(a) and (b), 13(a) and (b) Uniqueness

b 3, 7(a) and (b), 13(a) and (b), 14(b) SLP, SLP, HB

c 13(a) and (b), 14(c) SLP, SLP, HB, SLP, SLP, HB
d® 13(a) and (b), 14(d) SLP, SLP, HB, SLP, SLP, HB

e 13(a) and (b), 14(e) SLP, SLP, SLP, SLP, HB

£00 13(a) and (b), 14(f) SLP, SLP, SLP, SLP, HB

g 13(a), 14(g) HB, SLP, SLP, HB, SLP, SLP, HB
h 13(a) and (b), 14(h) HB, SLP, SLP, HB

i 13(a), 14(j) HB, SLP, SLP, SLP, SLP, HB

jo 13(a), 14(j) HB, SLP, SLP, SLP, SLP, HB

k 13(b) SLP, SLP, SLP, SLP

[ 13(b) SLP, SLP, SLP, SLP

2The region indicated by} and the region directly before it are located on opposite sides of the double limit variety. Therefore, the relative location
of SLP changes in the two regions.
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respectively, by the occurrence of four limit points and a (Fig. 15(e)). These diagrams suggest a quasi-periodic be-
Hopf point (SLP, SLP, SLP, SLP, HB). The continuity di- havior. The maximum Lyapunov exponent, computed by the
agram is shown in Fig. 14(e). When crossing the double algorithm of Wolf et al. [17], is zero further confirming the
limit variety (region (f)) the same number of limit points quasi-periodic nature of the attractor. As the feed tempera-
and Hopf points is found, although the relative positioning ture moves to higher valuesy; = 0.830) the oscillations
of limit points change, as shown in Fig. 14(f). become more erratic and the same dangerous situation pre-
When crossing region (g) three branches of fhelegen- vails (Fig. 15(8)—(c3)). The maximum Lyapunov exponent
eracy curve are crossed and therefore a third HB point ap-of the system is 0.02145 confirming the chaotic nature of the
pears. Region (g) is characterized with the presence in thisoscillations. It should be also noted that the system, for this
order of HB, SLP, SLP, HB, SLP, SLP, HB. The continuity region (h), also admits a smaller region of periodic behav-
diagram is shown in Fig. 14(g). The third Hopf can be seen ior around the second Hopf poiiB2) (Y; = 0.933797).
to lie close to the static limit point. Three regions of periodic However, these oscillations coexist with the static branch.
behavior can be found in the model. Moving to regions (i) and (j), two static limit points are
When moving from region (g) to region (h) one HB point born as well as a Hopf point. Regions (i) and (j) are charac-
disappears as well as two static limit points. Region (h) is terized by the presence in this order of HB, SLP, SLP, SLP,
characterized by the presence in this order of HB, SLP, SLP, SLP, HB. The relative location of limit points changes in
HB (Fig. 14(h)). This region has interesting features, since regions (i) and (j) (Fig. 14(i) and (j)) since they are located
it is the only region in the diagram where sustained oscilla- on the different sides of the double limit variety.
tions do not coexist with any static branch. For any values of Some of these 10 regions can be found in Fig. 13(b) show-
Y; between the smallest Hopf poitiB1) (Yi = 0.800857) ing the complete branching phenomena in the parameter
and the first limit poin{SLPy) (¥s = 0.932258), the system  space(Xa,. Leg). However, two new regions are added by
will settle on sustained oscillations for any choice of initial this diagram. Region (k) is characterized by the occurrence
conditions. Moreover the stable periodic branch emanating of four static limit points but with no Hopf points. Region
from the Hopf point HB loses its stability through Torus (1) is similar to region (k) expect for the relative location of
bifurcation and the resulting oscillations present a quite dan- the static limit points.
gerous situation for the reactor since a sudden ‘burst’ in  In all of these regions (expect regions (a, h, I, k)) the lo-
temperature is observed all along the periodic region. This cation of the periodic branch between static branches intro-
situation is explained in Fig. 15 showing time traces and duces in the system the phenomenon of multistability where
phase plane diagrams for three values of the feed temperaself sustained oscillations coexist with the high and low con-
ture Y;. Very close to the Hopf point, i.e; = 0.800857, version static branch. Fig. 16(a)—(c) show time traces for
the system, as expected, exhibits a stable limit cycle with (Xa,, Lea, ¥5) = (0.6,0.5,0.75213 and for three sets of
small oscillations (Fig. 15¢3—(c1)). However, whenthe feed initial conditions. The periodic behavior in this region is not
temperatureY; moves even slightly highefY; = 0.8009 orbitally stable since different initial conditions can break it
a dangerous burst in the temperature occurs. The temperand push it out of its domain of attraction, resulting in the
ature jumps to very high values (more than 8.5), exceed- annihilation of the oscillations. Tables 2 and 3 summarize
ing more than 10 times the mean valueYot= 0.8 for the the stability characteristics of the 12 regions found in the
limit cycle. This sudden burst is also accompanied by a lost parameter spacgXa,, Lea) and (Xa;, Leg).
of stability as it can be seen in the time trace of interme- A final note should be made about the impact of oscil-
diate component (B) (Fig. 156 and in the phase plane latory behavior on the yield of the intermediate product.

Table 3

Summary of the stability characteristics for the different regions of the branch sets

Region Coexistence of oscillations Coexistence of oscillations Coexistence of oscillations with Existence of oscil-
with low temperature branch with high temperature branch middle temperature branch lations alone

a N N N N

b Y N N N

c Y Y Y N

d Y Y Y N

e Y N N N

f Y N N N

g Y Y N N

h Y N N Y

i Y N N N

j Y N N N

k N N N N

| N N N N
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Different simulations were carried out in regions of periodic e Negligible heat of adsorption.
behavior. They have shown that the average yield deterio-e Both reactions are of first order.
rates in these regions and thus oscillatory behavior is to be
eliminated either by choosing appropriate startup conditions
or by a tight control.

Unsteady state mass balance for the dense phase:

dc; L
¢iAIHE =G|(Cif —C) + QEiAC/O (C;i — C)dh

5. Conclusions —ps(1 - €)AHR; (A1)
A general and useful picture of static and dynamic  Unsteady state heat balance for the dense phase:

branching phenomena in a gas—solid bubbling fluidized-bed T _

catalytic reactor has been constructed using the singular-¢>HA|HE = GpiCpi (Tt — T) + piCpt OHAC

ity theory and continuation technigues. Both the static and H

dynamic equations were expressed as single algebraic equa- x/ (T —T)dh + A\ H(1 — €)ps

tions. It was shown that the highest static singularity the 0

system can exhibit is the double limit variety. Three different 2

static regions were found in the system: a region of unique- x Y ri(—AH;) (A.2)

ness, region of three solutions and regions of maximum five i=1

solutions. The analysis of dynamic bifurcation has shown 1555 and heat balances in the bubble phase:

that the system can predict codimension one singularities  ggih the mass balances and heat balances are assumed at

for a wide range of parameters. The complete static and dy-5¢ pseudo-state because of negligible mass and heat capaci-
namic bifurcation analysis was useful in delineating a total {jas and are given by

of 12 dynamically different regions. Periodic behavior can _
be found in 10 regions. In 9 of the 10 regions the sustained GCE
oscillations are not orbitally stable since they coexist with dh
low and high temperature static branches. However, in one
region sustained aperiodic oscillations can be found that (7T _
do not coexist with any static branches as they are the soIeGCE = —QeHAc(T = T) (A.4)
attractors to the system. However, these oscillations present .
a dangerous situation for the system as a sudden burst inVith the boundary conditions,
the temperature is observed, requiring therefore a tight con-a¢ 5, — 0,C;=Cy and T =T; (A.5)
trol of the reactor. The effect of the branching phenomena
on the yield of the intermediate product has shown that Egs. (A.3)—(A.5) are solved analytically. The resulting solu-
the maximum yield can occur for some regions in unstable tions are used to evaluate the integral in Egs. (A.1) and (A.2).
branches and that oscillatory behavior deteriorates the yieldAssuming thatQea = Qes = Qec = Qn and casting the
and should be controlled. equations in dimensionless form gives the model equations

as described in the text.

The yield of the reactor is given by

= — Qg Ac(C; — Cy) (A.3)

Appendix A. Derivation of the model of the

fluidized-bed catalytic reactor _ GiXs + GcXan (A.6)
(GI + Go) X '
The following assumptions are used in the derivation of here
the unsteady-state mass and energy balance for the reactor
model. XgH = XB + (Xp; — Xp)e“ (A.7)

e The gas in the bubble phase is assumed to be in plug flow. g

e The dense phase gas is perfectly mixed. This assumption OcHA
is justified for strongly adsorbed gases. a=EC

e The extent of the reaction in the bubble-cloud phase is Ge
negligible. This assumption is justified for small particles g is the reciprocal of the effective residence time of the bed
size @@p = 150pum) and high flow rates giving rise to fast  5nq is given by
rising bubbles and negligible cloud phase.

» Negligible mass and heat transfer resistances between theg _ G +Gcl-¢€e) (A.9)
solid particles and the dense phase gas. AH

e An average value of bubble size and hence an average - .
value of the exchange parameters between the dense and Calculation of the two-phase mode! parameters [18-21];
bubble phase are used. Gg = A(U — ¢pUmt) (A.10)

(A.8)
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€
Gc=Gg|10+ ——— A.11
¢ B < + o — 1.0) ( )
G| =AU - G¢ (A.12)
eGp
Ac= ——M A.13
CT @ = 10)Un (A13)
Al=A—-Ac (A.14)
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